If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2+3n-1=0
a = 9; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·9·(-1)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{5}}{2*9}=\frac{-3-3\sqrt{5}}{18} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{5}}{2*9}=\frac{-3+3\sqrt{5}}{18} $
| x/4=x/5-10 | | 3a+10=-a | | 5-4x=(1+x) | | 0.07*x=8.8 | | 8(x+5)=56. | | -7x-2(4x+3)-6=18 | | x2+8x+7=27 | | x2-+8x+7=27 | | 7x-2(4x+3)-6=18 | | 29+c=40/4 | | 29+c/4=44 | | (x-2)(4x+1)-(2x+3)²=8 | | 29+c/4=40 | | 6p/10=p-3/6 | | (5x^2)+8=0 | | 10^x+x=11 | | 4u=6.5 | | 5x^+8=0 | | 29c/4=40 | | -17+n÷5=33 | | 2÷5x+3=1÷5x+11 | | -2(1-4x)=-3x+8 | | 6x+41=111 | | 5d-d-10=6d+3 | | (-3z+3)^2+5z(-2z-5z)=0 | | 24+3x=-27 | | 2^2x+1-17(2)^x+8=0 | | -10x+58+6x+49=111 | | 6x-10=4/(3x-4) | | 12-6x=8x-12 | | x(6-2x)(18-2x)=0 | | X=x(6-2x)(8-2x) |